Extensions 1→N→G→Q→1 with N=C22×A4 and Q=S3

Direct product G=N×Q with N=C22×A4 and Q=S3
dρLabelID
C22×S3×A436C2^2xS3xA4288,1037

Semidirect products G=N:Q with N=C22×A4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×A4)⋊1S3 = A4×S4φ: S3/C1S3 ⊆ Out C22×A4169+(C2^2xA4):1S3288,1024
(C22×A4)⋊2S3 = PSO4+ (𝔽3)φ: S3/C1S3 ⊆ Out C22×A4129+(C2^2xA4):2S3288,1026
(C22×A4)⋊3S3 = A4×C3⋊D4φ: S3/C3C2 ⊆ Out C22×A4366(C2^2xA4):3S3288,928
(C22×A4)⋊4S3 = (C2×C6)⋊4S4φ: S3/C3C2 ⊆ Out C22×A4366(C2^2xA4):4S3288,917
(C22×A4)⋊5S3 = C22×C3⋊S4φ: S3/C3C2 ⊆ Out C22×A436(C2^2xA4):5S3288,1034

Non-split extensions G=N.Q with N=C22×A4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×A4).S3 = C2×C6.7S4φ: S3/C3C2 ⊆ Out C22×A472(C2^2xA4).S3288,916
(C22×A4).2S3 = C2×Dic3×A4φ: trivial image72(C2^2xA4).2S3288,927

׿
×
𝔽